Post-glacial sediment delivery continuum to an impounded valley reach in central Maine: a multi-disciplinary approach

Ian Nesbitt¹, Sean Smith¹, Seth Campbell¹, Bess Koffman², Steven Arcone³, Kristin Schild¹

¹Department of Earth and Climate Sciences, University of Maine ²Department of Geology, Colby College ³Thayer School of Engineering, Dartmouth College

Problems and Importance

Sediment delivery studies are critical to understanding landscape evolution, but:

- 1. Lack of studies in formerly-glaciated regions
- 2. Sediment volume is tricky to measure lakes are complex & not man made
- 3. Sedimentation time is tricky to measure ice-off age is not well known

Location

Fig. 1 - Approximate Location of Watersheds in which Erosion study was made.

Methods

Results

Discussion

Summary

Problem 1

Sedimentation within the North American glacial limit is under-studied.

Especially compared with other regions (e.g. Roehl, 1962; Happ, 1975; Smith and Wilcock, 2015)

Location

Fig. 1 - Approximate Location of Watersheds in which Erosion study was made.

Methods

Results

Discussion

Summary

Problem 1

Sedimentation within the North American glacial limit is under-studied.

Especially compared with other regions (e.g. Roehl, 1962; Happ, 1975; Smith and Wilcock, 2015)

Introduction

Location

Methods

Results

Discussion

Summary

Problem 2

Most studies use point-source methods (cores, probes) for volume estimates.

Assumes spatial predictability in highly variable landscapes (Jacobson and Bradshaw, 1982)

MEGIS 2015-2016

The Selection of Sites for Paleovegetational Studies¹

G. L. JACOBSON, JR.,* AND R. H. W. BRADSHAW†

*Department of Botany and Institute for Quaternary Studies, University of Maine, Orono. Maine 04469, and †Department of Geological Sciences, Brown University, Providence, Rhode Island 02912 Received September 5, 1980

Introduction

Location

Methods

Results

Discussion

Summary

Problem 2

Most studies use point-source methods (cores, probes) for volume estimates.

Assumes spatial predictability in highly variable landscapes (Jacobson and Bradshaw, 1982)

The Selection of Sites for Paleovegetational Studies¹

G. L. JACOBSON, JR.,* AND R. H. W. BRADSHAW[†] *Department of Botany and Institute for Ouaternary Studies, University of Maine, Orono, Maine 04469,

and †Department of Boliany and Institute for Qualerinary strates, University of Maine, Orono, Maine Orono and †Department of Geological Sciences, Brown University, Providence, Rhode Island 02912 Received September 5, 1980

Need many cores to create a decent volume model here!

Objectives

- 1. Use core analysis and geophysics to estimate sediment delivery rate and volume for deglaciated period
- 2. Establish a delivery rate continuum
- 3. Attempt to use landscape features to help explain events in the continuum
- 4. Quantify the effects of human influence (dams, logging, development, etc.)

Study location - selection criteria

- Low-mid Strahler order watershed in western Penobscot
- Above marine transgression
- Shallow and fresh enough to measure sediment column with radar
- Deep enough to be oligotrophic
- Dam on lake outlet

Study location - Kingsbury/Mayfield Ponds (K-M)

Methods

Introduction

Location

Results

White line = Penobscot-Kennebec watershed boundary

Discussion

Summary

Results

Discussion

Summary

Methods - ground-penetrating radar

Introduction

Location

Methods

Results

Discussion

Summary

Radar processing & core location selection

- readgssi (Nesbitt et al. 2021) for distance normalization
- RADAN 7 for filtering and picking
- XYZ of picks to surfaces in QGIS

Methods

Results

Discussion

Summary

Coring and analysis

- Livingstone (1955) style piston corer (pictured)
- Standard core analysis
- ¹⁴C dates
- ²¹⁰Pb activity
- Matched core features with radar reflections

Introduction

Lidar

Key takeaway: complex surface!

MEGIS 2015-2016

Location

Methods

Results

Discussion

Summary

Radar pick analysis

Key takeaways: complex surface + sediment focusing = complex sedimentation pattern

Note: Bigelow Brook delta sediments (symbolized as Δ) are too thick to evaluate with radar and are excluded here

Introduction

Location

Methods

Results

Discussion

Summary

Gyttja-clay transition

Key takeaway: Transition zone between gyttja and clay at 2.7-3.1 m

Results

Discussion

Summary

Core-radar comparison

Key takeaways:

- Major increase in sedimentation rate in mid 20th century

Deglaciation timing

Deglaciation age is probably between 13.0 and 14.2 cal ka BP

The deglaciation of Maine, U.S.A.

Harold W. Borns, Jr.¹, Lisa A. Doner³, Christopher C. Dorion¹, George L. Jacobson Jr.¹, Michael R. Kaplan⁴, Kari J. Kreutz,¹, Thomas V. Lowell⁵, Woodrow B. Thompson² and Thomas K. Weddle,²

¹ Institute for Quaternary and Climate Studies, University of Maine, Orono, Maine 04469, U.S.A.
 ² Maine Geological Survey, Augusta, Maine 04333-0022, U.S.A.
 ³ Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado 80309-0450, U.S.A.
 ⁴ Department of Geology and Geophysics, University of Wisconsin, Madison, Wisconsin 53706, U.S.A.
 ⁵ Department of Geology, University of Chicmati, Cincinnati, Chio 45221, U.S.A.

X = study location

Methods

Results

Discussion

Summary

Deglaciation timing

Deglaciation age is probably between 13.0 and 14.2 cal ka BP

	107 m	
Contents lists available at ScienceDirect Quaternary Science Reviews ELSEVIER journal homepage: www.elsevier.com/locate/quascirev	13 ka ice margin [=15.5 ka calibrated] Laurentide Ice N Sheet 12.5 ka ice margin [=14.2 ka calibrated] Laurentide Ice Sheet 12.5 ka ice margin [=14.2 ka calibrated] Laurentide Ice Sheet	
Invited review An updated radiocarbon-based ice margin chronology for the last ^F deglaciation of the North American Ice Sheet Complex	Br Outline NB-65 B Outline NB-65 B Outline State	NICH CONTRACT
April S. Dalton *6, "Artin Margold *, Chris R. Stokes *, Lev Tarasov *, Arthur S. Dyke *e, Roberta S. Adams ⁴ , Serge Allard ⁶ , Heather E. Arends ⁶ , Nigel Atkinson ¹ , John W. Attig ¹ , Peter J. Barnett ⁶ , Robert L. Barnett ^{4,m} , Martin Batterson ⁶ , Pascal Bernatchez ¹ , Harold W. Borns Jr. *, Andy Breckenridge ⁷ , Jason P. Briner ⁶ , Etienne Brouard ^{7,8} , Janet E. Campbell ¹ , Anders E. Carlson ¹ , John J. Clague ⁶ , B. Brandon Curry ⁶⁰ , Robert-André Daigneault ⁸ , Hugo Dubé-Loubert ^{9,2} , Don J. Easterbrook ⁸⁰ , Angela S. Gowan ⁶⁰ , Ken L. Harris ⁶¹ , Bernard Hétu ¹ , Tom S. Hooyer ^{80,4} , Carrie E. Jennings ⁸⁴ , Mark D. Johnson ¹⁴ , Alan E. Kehew ¹³ , Samuel E. Kelley ¹⁴ , Daniel Kerr ¹ , Edward L. King ¹⁰ , Kristian K. Kjeldsen ⁶⁰⁰ , Ana R. Knaeble ⁶⁵ , Patrick Lajeunesse ¹ , Thomas R. Lakeman ⁶⁰ , Michel Lamothe ¹ , Phillip Larson ⁶⁰ , Martin Lavoie ¹ , Henry M. Loope ⁶⁹ , Thomas V. Lowell ⁶¹ , Barbara A. Lusardi ⁶⁴ , Jouraje M. Mart ⁷¹ , Sabelle McMartin ¹⁵ , E. Chardel Nivon ⁷¹ , Serre Occhietti ⁸⁵ ,	Montreal Onum On	A CONTRACTOR OF
Michael A. Parkhill ¹⁸ , David J.W. Piper ¹¹ , Antonius G. Prok ⁸ , Pierre J.H. Richard ¹¹⁰ , John C. Ridge ¹⁰⁷ , Martin Ross ¹⁰⁰ , Martin Roy ² , Allen Seaman ⁸ , John Shaw ¹¹ , Rudolph R. Stea ³⁴⁵ , James T. Teller ³⁴⁷ , Woodrow B. Thompson ¹² , L. Harvey Thorleifson ⁶⁶ , Daniel J. Utting ⁴⁴³ , Jean J. Veillette ¹ , Brent C. Ward ¹⁷ , Thomas K. Weddle ²² , Herbert E. Wright Jr. ¹⁰⁰ , ¹	11.5 ka ice margin -70°. (=13.5 ka calibrated) -70°. Laurentide Ice -70°. Shoet -70°. Laurentide Ice -70°. Shoet -70°.	
 A coperative Landsmith Linkersky, Denham Linkersky, Phage. Cock Beynki. Pagerment of Kysica Gorgenyky and Gorcenkog, Carini University, Space. Cock Beynki. Pagerment of Kysica Gorgenyky and Gorcenkog. Carini University, Space. Cock Beynki. Pagerment of Kysica Gorgenyky and University, Malex Noroso Kais, Caraba Pagerment of Kysica Gorgenyky and University, Malex Noroso Kais, Caraba Pagerment of Kysica Gorgenyky and Kysica Diversity, High Kysica Diversita Diversity, High Kysica Diversita Diversity, High Kysica Diversity, High Kysica Diver	Sheet Sheet Sheet Sheet	

Methods

Results

Discussion

Summary

Discussion - sediment delivery continuum

Key takeaways:

- Sediment mass delivery to K-M decreased by an order of magnitude around 8500 cal yr BP
- Pre-transition sediment mass delivery rate greatly exceeds that of modern
- Modern rates are highest in more than 7000 years
- WEPP sediment delivery estimate for this watershed: 67 Mg/yr (within purple bar)

Location

Methods

Results

Discussion

Summary

LiDAR analysis

Key takeaways:

- Outwash channels (OC) exist on both sides of present-day drainage divide (white line)
- Whitman Bog (WB) appears to contain lake deposits
- Apparent spillway from Whitman Bog to Bigelow Brook (BB)
- OC as source of inorganics?

Outwash channels

Key takeaways:

- Volume of sediment eroded from channels is same order of magnitude as volume of clay in K-M subsurface
- Channel erosion caused by large volume of meltwater from retreating ice sheet (panel 3)

Summary points

- Sedimentation studies can be successful in glaciated regions, but complex!
- Sediment focusing makes accurate sediment volume calculation challenging. Radar (or other geophysics) necessary
- Continuum curve suggests switch in the K-M sediment dynamics around 8500 cal yr BP
- Glacial outwash channels probably major source of sediment in the K-M tributary system, perhaps much of the clay in the subsurface
- Modern sedimentation is higher than in past 7000 years, but nowhere near rates seen prior to 8500 cal yr BP

References / questions?

Arcone, S. A. (2018). Sedimentary architecture beneath lakes subjected to storms: Control by turbidity current bypass and turbidite armouring, interpreted from ground-penetrating radar images. *Sedimentology*, 65(5), 1413–1446. <u>https://doi.org/10.1111/sed.12429</u>.

Borns, H. W., Doner, L. A., Dorion, C. C., Jacobson, G. L., Kaplan, M. R., Kreutz, K. J., Lowell, T. V., Thompson, W. B., & Weddle, T. K. (2004). The deglaciation of Maine, U.S.A. In J. Ehlers & P. L. Gibbard (Eds.), Quaternary Glaciations - Extent and Chronology (Vol. 2, pp. 89–109). Elsevier. <u>https://doi.org/10.1016/S1571-0866(04)80190-8</u>

Dalton, A. S., Margold, M., Stokes, C. R., Tarasov, L., Dyke, A. S., Adams, R. S., Allard, S., Arends, H. E., Atkinson, N., Attig, J. W., Barnett, P. J., Barnett, R. L., Batterson, M., Bernatchez, P., Borns, H. W., Breckenridge, A., Briner, J. P., Brouard, E., Campbell, J. E., ... Wright, H. E. (2020). An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex. *Quaternary Science Reviews*, 234. <u>https://doi.org/10.1016/j.quascirev.2020.106223</u>

Happ, S. C. (1945). Sedimentation in South Carolina Piedmont valleys. American Journal of Science, 243(3), 113–126. https://doi.org/10.2475/ajs.243.3.113

Jacobson, G. L., & Bradshaw, R. H. W. (1981). The Selection of Sites for Paleovegetational Studies. *Quaternary Research*, 16(01), 80–96. https://doi.org/10.1016/0033-5894(81)90129-0

Maine Office of Geographic Information Systems. (2016). *Maine Elevation DEM 2015, 2016.* <u>https://maine.maps.arcgis.com/apps/webappviewer/index.html?id=b40a0b5283244a18907b9dea05769fb7</u>

Nesbitt, I. M., Simon, F.-X., Paulin, T., & Shaw, T. (2018). readgssi: an open-source tool to read and plot GSSI ground-penetrating radar data. Zenodo. https://doi.org/10.5281/zenodo.3261856

Roehl, J. E. (1962). Sediment source areas, and delivery ratios influencing morphological factors. *Int. Assoc. Hydro. Sci.*, 59, 202–213. https://ci.nii.ac.jp/naid/10018179867/en/

Smith, S. M., & Wilcock, P. R. (2015). Upland sediment supply and its relation to watershed sediment delivery in the contemporary mid-Atlantic Piedmont (U.S.A.). Geomorphology, 232, 33–46. https://doi.org/10.1016/j.geomorph.2014.12.036

WEPPcloud, https://wepp.cloud/weppcloud/runs/retired-practicability/disturbed/, accessed September 27, 2021.

Location

Methods

Results

Quantities

Additional references cited here:

- Anderson, R. S., Jacobson, G. L., Davis, R. B., & Struckenrath, R. (1992). Gould Pond, Maine: late-glacial transitions from marine to upland environments. *Boreas*, *21*, 359–371. <u>https://doi.org/10.1111/j.1502-3885.1992.tb00040.x</u>
- Dorion, C. C., Balco, G. A., Kaplan, M. R., Kreutz, K. J., Wright, J. D., & Borns Jr., H. W. (2001). Stratigraphy, paleoceanography, chronology, and environment during deglaciation of eastern Maine. In Special Paper 351: Deglacial history and relative sea-level changes, northern New England and adjacent Canada (pp. 215–242). Geological Society of America. https://doi.org/10.1130/0-8137-2351-5.215
- Holstad, B., & Degago, S. A. (2021). Strength and deformation characterization of Norwegian organic cohesive soil (gyttja). *IOP Conference Series: Earth and Environmental Science*, *710*(1), 1–11. <u>https://doi.org/10.1088/1755-1315/710/1/012018</u>

Flanagan, D. C., & Nearing, M. A. (1995). USDA-Water Erosion Prediction Project. Hillslope profile and watershed model documentation.

Table 3: Table of quantities	_			
	ê			
Description	Quantity	Units	Error	Source
Deglaciation age	13.0-14.2	cal ka BP	2σ	Anderson et al. (1992); Dorion et al. (2001) Borns et al. (2004); Gramly (2009); Dalton e al., (2020)
Volume of sediment excavated from outwash channels	6.0–6.4	10 ⁶ m ³	2σ	Topographic difference calculation
Volume of paraglacial clay in K-M	4.0-4.2	10 ⁶ m ³	2σ	GPR volume
Density of clay	2024–2120	kg m ⁻³	2σ	Schjønning et al. (2017) based on 76% clay content and 2% organic matter
Clay-gyttja transition age	8.41-8.55	cal ka BP	2σ	¹⁴ C sample D-AMS 028115
Volume of gyttja in K-M	2.1-2.3	10 ⁶ m ³	2σ	GPR volume
Density of gyttja	1140–1460	kg m ⁻³	2σ	Holstad and Degago (2021)
Paraglacial sediment load	1417–1913	Mg/yr	2σ	Calculated based on GPR volume, density, and estimated duration ranges
Postglacial sediment load	62-81	Mg/yr	2σ	Calculated based on GPR volume, density, and estimated duration ranges
Sediment load, AD 1990- 2020	317-363	Mg/yr	2 SEM	²¹⁰ Pb analysis (mean yearly value)
WEPP discharge estimate	1.8	10 ⁷ m ³	n/a	Flanagan and Nearing, (1995)
WEPP sediment delivery	67	Mg/yr	n/a	Flanagan and Nearing, (1995)

Discussion

Summary

Ages

Pond	Sample code	Core — thrust	Depth (m)	Sample type	¹⁴ C yr	1σ	Cal yr	1σ
Kingsbury	D-AMS 028113	GE262-KBP18-1A — 01L	0.970	macrofossil	1891	32	1798	80
	D-AMS 028114	— 02L	1.835	macrofossil	3687	28	4028	66
	D-AMS 028115	— 03L	2.600	macrofossil	7703	38	8479	70
	D-AMS 028116	— 04L*	3.255	bulk sediment	19397	126	23402	350
Mayfield		GE262-MAY19-1A — 03L	2.25	pine cone	3299	29	3512	58
		— 04L	3.13	bulk sediment	5229	33	5964	51